О компании 
 Услуги 
 Пользователям 
 Поддержка 
 Контакты 
 
Главные новости
В мире
Россия
Бизнес
Наука и техника
Спорт
Культура
Здоровье
Подключиться
Оставить заявку
на подключение
Ссылки
Тарифные планы
Оставить заявку в службу ТП
Как оплатить
Карта сайта
Ресурсы сети
Почта
Блоги
Кино
Media
Фотогалерея
FTP сервера
Общение
Пиринговые сети
Игровые сервера
 
06.07.2008 18:00:00  Риск вымирания редких видов может оказаться больше, чем мы думаем <<<

Рис. 1. Вверху: Схема построения математической модели динамики популяции, в которой учитываются изменчивые внешние условия и случайные процессы на разных этапах жизни особи. Внизу: список моделей, учитывавших те или иные случайные факторы. Изображение из обсуждаемой статьи в Nature

Рис. 1. Вверху: Схема построения математической модели динамики популяции, в которой учитываются изменчивые внешние условия и случайные процессы на разных этапах жизни особи. Внизу: список моделей, учитывавших те или иные случайные факторы. Изображение из обсуждаемой статьи в Nature

Исследование американских биологов показывает, что принятые сейчас математические модели популяционной динамики могут сильно ошибаться в отношении небольших популяций. Возможно, потребуется пересмотр риска вымирания малочисленных видов.

Из наблюдений за живой природой известно, что численность какого-то вида на той или иной территории обычно не постоянна, а меняется из года в год. Очевидно, что если из-за этих колебаний популяция в какой-то момент резко сократится, то она уже не восстановится, а просто вымрет. Это становится особенно важным для малочисленных видов – у них вымирание популяции может означать исчезновение вида с лица Земли.

Один из главных возникающих здесь вопросов – в чём причина колебаний численности и можно ли как-то на нее повлиять? Для того чтобы на этот вопрос ответить, нужны не только полевые наблюдения, но и адекватные математические модели, которые помогли бы понять причины этих колебаний. Такие модели популяционной динамики, конечно, разрабатываются давно, и многие из них уже десятилетиями входят в учебники по математическому моделированию в экологии.

В последнем выпуске журнала Nature появилась статья, в которой утверждается, что все использовавшиеся до сих пор модели сильно ошибаются, когда речь заходит о малочисленных популяциях. В этих моделях, говорят авторы, не в полной мере учитываются факторы случайности при появлении на свет и развитии отдельных особей. Построенная авторами новая, более сложная модель, учитывающая эти факторы, приводит к резкому увеличению риска вымирания редких видов.

Чтобы изложить ситуацию подробнее, начнем с двух выводов, к которым пришли экологи после многочисленных попыток адекватно, без вычислительных артефактов, описать колебания реальных популяций:

  • численность популяции требуется рассчитывать дискретными шагами по времени, а не плавной эволюцией (говоря на языке математики, надо использовать не дифференциальные, а конечно-разностные уравнения);
  • нельзя пренебрегать случайными вариациями (то есть формулы должны содержать не только детерминированные, но и случайные слагаемые).

Одна из классических моделей, используемых для моделирования популяционной динамики, – модель Рикера (Ricker_model) – основывается на такой формуле для расчета численности популяции в i+1-ом поколении по ее значению в предыдущем, i-ом поколении:
Ni+1 = R Ni e–αNi
Коэффициент R > 1 отражает среднюю плодовитость в расчете на одну особь, а коэффициент α (много меньше 1) характеризует тот порог, начиная с которого популяция начинает вымирать от перенаселения: если в каком-то поколении количество особей заметно превышает 1/α, то в следующем поколении от популяции мало что останется.

Это – детерминистическая модель; в ней начальное количество особей полностью и однозначно определяет всю последующую эволюцию. В современных моделях в нее добавляют элемент случайности, то есть считают, что величина Ni+1 не строго задается этой формулой, а может слегка от нее отличаться в ту или другую сторону.

Авторы новой работы модернизировали эту классическую модель Рикера. В отличие от предыдущих моделей, они работали не на уровне всей популяции в целом, а на уровне индивидуальных особей. При этом они учитывали сразу четыре источника случайностей:
1) колебания внешних условий (климат, пища, естественные враги);
2) демографическую случайность (каждая особь имеет независимую вероятность выжить или умереть);
3) случайность в определении пола особи;
4) демографическое разнообразие (то есть особи имеют вовсе не одинаковую способность к выживанию и репродукции).

Авторы построили несколько математических моделей, включавших те или иные факторы из этого списка (см. рис. 1).

В рамках всех этих моделей была изучена динамика небольшой популяции (численностью в несколько десятков особей) при различных значениях параметров. Более конкретно, путем многократного прогона моделирования определялось среднее время жизни популяции, то есть количество поколений до ее полного вымирания.

На рис. 2 показаны типичные результаты такого анализа. Здесь по вертикальной оси показано среднее время жизни популяции, которая вначале насчитывала 30 особей, а по горизонтальной – значение коэффициента воспроизводства R. Разные кривые отвечают разным моделям.

Рис. 2. Время до исчезновения популяции, состоявшей изначально из 30 особей, в зависимости от коэффециента воспроизводства R. Разные кривые отвечают разным моделям динамики популяции. Обозначения те же, что и на рис. 1. Изображение из обсуждаемой статьи в Nature

Рис. 2. Время до исчезновения популяции, состоявшей изначально из 30 особей, в зависимости от коэффециента воспроизводства R. Разные кривые отвечают разным моделям динамики популяции. Обозначения те же, что и на рис. 1. Изображение из обсуждаемой статьи в Nature

Два важных свойства этих результатов бросаются в глаза.

Во-первых, видно, что самая простая модель, отмеченная буквой P, проходит на графике выше всех. Например, при R = 10 и при неизменных внешних условиях начальная популяция из 30 особей сможет продержаться, согласно этой модели, несколько тысяч поколений. Однако если при тех же постоянных условиях учесть случайность в определении пола и демографическое разнообразие (кривая NBBd), то среднее время выживания падает до десятка поколений!

Во-вторых, изменчивость внешних условий перестает играть большую роль при переходе к более сложным моделям. Если различие между кривыми P (простая модель в постоянных условиях) и NBe (простая модель в изменчивых условиях) огромное, то разница между NBBd (сложная модель в постоянных условиях) и NBBg (сложная модель в изменчивых условиях) очень невелика.

Из этих результатов следуют вполне конкретные выводы. Опираясь на простейшие модели популяционной динамики, можно здорово ошибиться в оценке риска и причин вымирания малочисленных видов. Даже если поместить исчезающий вид в »естественные условия» и остановить его истребление, то всё равно имеется риск спонтанного исчезновения вида, причем намного больший, чем считалось до сих пор.

Может возникнуть вопрос: а почему ученые уверены, что более сложная модель точнее описывает реальную ситуацию? Для ответа на этот вопрос авторы статьи провели классический эксперимент. Они взяли 60 инкубаторов, поместили в них разное количество особей жука Tribolium castaneum, и дали им срок 24 часа для того, чтобы отложить яйца. Затем убрали взрослых особей, оставили инкубаторы на 34 дня для созревания яиц, а по истечении этого срока – сосчитали особей в новом поколении. Когда ученые попытались описать результаты этого опыта с помощью всех моделей, то оказалось, что точнее всего результаты описывает самая сложная модель.

В заключение стоит, однако, подчеркнуть, что для более глубокого понимания динамики реальных популяций, особенно на масштабе многих поколений, требуется включать в рассмотрение и генетические механизмы регуляции численности и состава популяции, социальное поведение животных и другие факторы. Это может привести к ситуации, когда параметры, считавшиеся константами, начинают изменяться. Без детального исследования трудно сказать, изменится ли при этом характер эволюции.


Источник
: Brett A. Melbourne, Alan Hastings. Extinction risk depends strongly on factors contributing to stochasticity // Nature. V. 454. P. 100–103 (3 July 2008).

См. также:
1) Общественный образ жизни повышает стабильность системы «хищник–жертва», «Элементы», 29.10.2007.
2) Вероятность вымирания вида с точки зрения теории динамических систем – обсуждение некоторых физических аспектов этой работы.


Игорь Иванов

 

http://elementy.ru/news/430767

http://www.nature.com/nature/journal/v454/n7200/abs/nature06922.html




Возврат к списку новостей

 
Wiki-новости
Экономика и финансы
Информационные технологии
Физика
Математика
Я - Женщина
Афиша
Нумизматика
История
История России
Великая Отечественная война
История Америки
Европа в Средние века
Великое княжество Литовское
Раннее Новое время
Возрождение
Византийская империя
Древний Рим
Древняя Греция
Древний Египет
Археология
Философия
Религии мира
Эзотерика
Астрономия
Биология
Орнитология
Океанология
Палеонтология
Стратиграфия и геохронология
Геология
Отправить SMS
 
Карта сайта